Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630337

RESUMEN

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Asunto(s)
Muerte Celular , Etanol , Neuronas , Fármacos Neuroprotectores , Extractos Vegetales , Hojas de la Planta , Sterculia , Animales , Ratas , Caspasa 3/metabolismo , Etanol/administración & dosificación , Etanol/química , Etanol/toxicidad , Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Ratas Wistar , Sterculia/química , Hojas de la Planta/química , Plantas Medicinales/química , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Lactato Deshidrogenasas/metabolismo , Proteína GAP-43/análisis , Apoptosis/genética , Estrés Oxidativo/genética , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/patología , Cerebelo/fisiología , Masculino , Femenino , Células Cultivadas , Muerte Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Fitoquímicos/administración & dosificación , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Cromatografía Líquida con Espectrometría de Masas , Metabolismo Secundario
2.
Proteomes ; 12(2)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38651369

RESUMEN

Zebra mussel (ZM), Dreissena polymorpha, commonly used as a sentinel species in freshwater biomonitoring, is now in competition for habitat with quagga mussel (QM), Dreissena rostriformis bugensis. This raises the question of the quagga mussel's use in environmental survey. To better characterise QM response to stress compared with ZM, both species were exposed to cadmium (100 µg·L-1), a classic pollutant, for 7 days under controlled conditions. The gill proteomes were analysed using two-dimensional electrophoresis coupled with mass spectrometry. For ZM, 81 out of 88 proteoforms of variable abundance were identified using mass spectrometry, and for QM, 105 out of 134. Interestingly, the proteomic response amplitude varied drastically, with 5.6% of proteoforms of variable abundance (DAPs) in ZM versus 9.4% in QM. QM also exhibited greater cadmium accumulation. Only 12 common DAPs were observed. Several short proteoforms were detected, suggesting proteolysis. Functional analysis is consistent with the pleiotropic effects of the toxic metal ion cadmium, with alterations in sulphur and glutathione metabolisms, cellular calcium signalling, cytoskeletal dynamics, energy production, chaperone activation, and membrane events with numerous proteins involved in trafficking and endocytosis/exocytosis processes. Beyond common responses, the sister species display distinct reactions, with cellular response to stress being the main category involved in ZM as opposed to calcium and cytoskeleton alterations in QM. Moreover, QM exhibited greater evidence of proteolysis and cell death. Overall, these results suggest that QM has a weaker stress response capacity than ZM.

3.
Pharmaceutics ; 15(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37631246

RESUMEN

Research on the neuroprotective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) and its use as a therapeutic agent has grown over the past 30 years. Both in vitro and in vivo experiments have shown that PACAP exerts a strong neuroprotective effect in many central and peripheral neuronal diseases. Various delivery routes have been employed from intravenous (IV) injections to intracerebroventricular (ICV) administration, leading either to systemic or topical delivery of the peptide. Over the last decade, a growing interest in the use of intranasal (IN) administration of PACAP and other therapeutic agents has emerged as an alternative delivery route to target the brain. The aim of this review is to summarize the findings on the neuroprotective effect of PACAP and to discuss how the IN administration of PACAP could contribute to target the effects of this pleiotropic peptide.

4.
Neuroendocrinology ; 113(2): 216-230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34348336

RESUMEN

BACKGROUND: PC12 pheochromocytoma tumor cell lines are widely used to decipher the intracellular signaling mechanisms mediating the effects of some growth factors. Nevertheless, the disparity in appearance of some PC12 cell lines used in the different publications questions our ability to compare the results obtained by the numerous laboratories which use them. This led us to analyze the phenotypic aspect and transcriptomic expression of 5 PC12 cell lines from different origins under control conditions and after treatment with nerve growth factor (NGF) or pituitary adenylate cyclase-activating polypeptide (PACAP). METHODS: Characterization of the 5 PC12 cell lines was conducted using imaging techniques and high-throughput real-time PCR combined with bioinformatics analysis. RESULTS: The results show that the 5 cell lines are very variable in terms of shape, proliferation rate, motility, adhesion to the substrate, and gene expression. This high heterogeneity of the cell lines is also found when looking at their response to NGF or PACAP on gene expression or differentiation, with even in some cases opposite effects, as, for example, on cell proliferation. Actually, only 2 of the cell lines tested exhibited some phenotypic similarities with each other, even though the transcriptomic analyses show that they are far from identical. DISCUSSION/CONCLUSION: As this issue of cell heterogenicity is not restricted to PC12 cells, the present results highlight the need to facilitate the supply of cell lines at low cost, the necessity to standardize practices regarding the use of cell lines, and the requirement to define precise markers of established cell lines which should be monitored in every publication. Regarding this latter point, the present data show that transcriptomic analysis by real-time PCR using a panel of genes of interest is easy to implement and provides a reliable method to control the possible drift of the cells over time in culture. Transcriptomic phenotyping combined with bioinformatics analysis can also be a useful approach to predict the response of the cells to treatments in terms of cell signaling activation, which can help to choose among several cell lines the most appropriate one for the investigation of a particular mechanism. Taken together, the results from this study highlight the need to use well-characterized cell lines with standardized protocols to generate reproducible results from 1 laboratory to the other.


Asunto(s)
Factor de Crecimiento Nervioso , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Ratas , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Células PC12 , Factor de Crecimiento Nervioso/farmacología , Laboratorios , Reproducibilidad de los Resultados
5.
iScience ; 25(1): 103685, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35106469

RESUMEN

The vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues from the adverse effects of radiation therapy and/or enhance its antitumor potential. To this end, we captured the kinetics of multi-omics layers-i.e. miRNome, targeted transcriptome, proteome, and metabolome-in irradiated primary human endothelial cells cultured in vitro. We then designed a strategy of deep learning as in convolutional graph networks that facilitates unsupervised high-level feature extraction of important omics data to learn how ionizing radiation-induced endothelial dysfunction may evolve over time. Last, we present experimental data showing that some of the features identified using our approach are involved in the alteration of angiogenesis by ionizing radiation.

6.
World J Gastroenterol ; 28(48): 6935-6949, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36632316

RESUMEN

BACKGROUND: Irritable bowel syndrome and bladder pain syndrome often overlap and are both characterized by visceral hypersensitivity. Since pelvic organs share common sensory pathways, it is likely that those syndromes involve a cross-sensitization of the bladder and the colon. The precise pathophysiology remains poorly understood. AIM: To develop a model of chronic bladder-colon cross-sensitization and to investigate the mech-anisms involved. METHODS: Chronic cross-organ visceral sensitization was obtained in C57BL/6 mice using ultrasound-guided intravesical injections of acetic acid under brief isoflurane anesthesia. Colorectal sensitivity was assessed in conscious mice by measuring intracolonic pressure during isobaric colorectal distensions. Myeloperoxidase, used as a marker of colorectal inflammation, was measured in the colon, and colorectal permeability was measured using chambers. c-Fos protein expression, used as a marker of neuronal activation, was assessed in the spinal cord (L6-S1 level) using immunohistochemistry. Green fluorescent protein on the fractalkine receptor-positive mice were used to identify and count microglia cells in the L6-S1 dorsal horn of the spinal cord. The expression of NK1 receptors and MAPK-p38 were quantified in the spinal cord using western blot. RESULTS: Visceral hypersensitivity to colorectal distension was observed after the intravesical injection of acetic acid vs saline (P < 0.0001). This effect started 1 h post-injection and lasted up to 7 d post-injection. No increased permeability or inflammation was shown in the bladder or colon 7 d post-injection. Visceral hypersensitivity was associated with the increased expression of c-Fos protein in the spinal cord (P < 0.0001). In green fluorescent protein on the fractalkine receptor-positive mice, intravesical acetic acid injection resulted in an increased number of microglia cells in the L6-S1 dorsal horn of the spinal cord (P < 0.0001). NK1 receptor and MAPK-p38 levels were increased in the spinal cord up to 7 d after injection (P = 0.007 and 0.023 respectively). Colorectal sensitization was prevented by intrathecal or intracerebroventricular injections of minocycline, a microglia inhibitor, by intracerebroventricular injection of CP-99994 dihydrochloride, a NK1 antagonist, and by intracerebroventricular injection of SB203580, a MAPK-p38 inhibitor. CONCLUSION: We describe a new model of cross-organ visceral sensitization between the bladder and the colon in mice. Intravesical injections of acetic acid induced a long-lasting colorectal hypersensitivity to distension, mediated by neuroglial interactions, MAPK-p38 phosphorylation and the NK1 receptor.


Asunto(s)
Dolor Crónico , Colon , Hiperalgesia , Microglía , Vejiga Urinaria , Dolor Visceral , Animales , Masculino , Ratones , Ratas , Receptor 1 de Quimiocinas CX3C/metabolismo , Proteínas Fluorescentes Verdes , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/farmacología , Ratas Sprague-Dawley , Médula Espinal/fisiopatología , Vejiga Urinaria/inervación , Vejiga Urinaria/fisiopatología , Dolor Visceral/fisiopatología , Colon/inervación , Colon/fisiopatología , Hiperalgesia/fisiopatología , Dolor Crónico/fisiopatología , Microglía/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-34583305

RESUMEN

The thymus is an important immune organ providing the necessary microenvironment for the development of a diverse, self-tolerant T cell repertoire, which is selected to allow for the recognition of foreign antigens while avoiding self-reactivity. Thymus function and activity are known to be regulated by sex steroid hormones, such as oestrogen, leading to sexual dimorphisms in immunocompetence between males and females. The oestrogenic modulation of the thymic function provides a potential target for environmental oestrogens, such as 17α-ethynylestradiol (EE2), to interfere with the cross-talk between the endocrine and the immune system. Oestrogen receptors have been identified on thymocytes and the thymic microenvironment, but it is unclear how oestrogens regulate thymic epithelial and T cell communication including paracrine signalling. Much less is known regarding intrathymic signalling in fish. Secretomics allows for the analysis of complex mixtures of immunomodulatory signalling factors secreted by T cells. Thus, in the present study, isolated thymocytes of the European sea bass, Dicentrarchus labrax, were exposed in vitro to 30 nM EE2 for 4 h and the T cell-secretome (i.e., extracellular proteome) was analysed by quantitative label-free mass-spectrometry. Progenesis revealed a total of 111 proteins differentially displayed between EE2-treated and control thymocytes at an α-level of 5% and a 1.3-fold change cut off (n = 5-6). The EE2-treatment significantly decreased the level of 90 proteins. Gene ontology revealed the proteasome to be the most impacted pathway. In contrast, the abundance of 21 proteins was significantly increased, with cathepsins showing the highest level of induction. However, no particular molecular pathway was significantly altered for these upregulated proteins. To the best of our knowledge, this work represents the first study of the secretome of the fish thymus exposed to the environmental oestrogen EE2, highlighting the impact on putative signalling pathways linked to immune surveillance, which may be of crucial importance for fish health and defence against pathogens.


Asunto(s)
Lubina , Animales , Etinilestradiol/farmacología , Femenino , Masculino , Proteómica , Secretoma , Timocitos
10.
Peptides ; 146: 170630, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34481915

RESUMEN

Prenatal ethanol exposure provokes teratogenic effects, due to oxidative stress and massive neuronal apoptosis in the developing brain that result in lifelong behavioral abnormalities. PACAP exerts anti-oxidative and neuroprotective activities on neuronal cells, and prevents ethanol neurotoxicity. The present study focused on the ability of PACAP to protect the brain of 30-day-old mice (P30) from prenatal alcohol exposure induced oxidative damage and toxicity. Pregnant mice were divided randomly into 4 groups, i.e. control group, ethanol group (1.5 g/kg ip daily injection), PACAP group (5 µg intrauterine daily injection) and an ethanol plus PACAP group. Offspring prenatally exposed to ethanol had decreased body weight and reduced cell survival. Moreover, production of ROS was sharply enhanced in the brain of prenatal ethanol-exposed animals, associated with an elevation in the activity of the antioxidant enzymes, and an increase of oxidative damages as shown by the accumulation of the lipid oxidation marker malondialdehyde and of protein carbonyl compounds. Intrauterine administration of PACAP during the gestational period restored the endogenous antioxidant system, prevented ROS overproduction and promoted the survival of dissociated cells from animals prenatally exposed to ethanol. Behavioral tests revealed that P30 animals exposed to ethanol during the prenatal period exhibited reduced motor activity, altered exploratory interest and increased anxiety. However, PACAP treatment significantly attenuated these behavioral impairments. This study demonstrates that PACAP exerts a potent neuroprotective effect against alcohol toxicity during brain development, and indicates that PACAP and/or PACAP analogs might be a useful tool for treatment of alcohol intoxication during pregnancy.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal/prevención & control , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Supervivencia Celular/efectos de los fármacos , Trastornos del Conocimiento/prevención & control , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Femenino , Ratones Endogámicos C57BL , Trastornos del Movimiento/prevención & control , Estrés Oxidativo/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Embarazo , Efectos Tardíos de la Exposición Prenatal
11.
J Neurosci ; 41(42): 8725-8741, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34462307

RESUMEN

Galanin, one of the most inducible neuropeptides, is widely present in developing brains, and its expression is altered by pathologic events (e.g., epilepsy, ischemia, and axotomy). The roles of galanin in brain development under both normal and pathologic conditions have been hypothesized, but the question of how galanin is involved in fetal and early postnatal brain development remains largely unanswered. In this study, using granule cell migration in the cerebellum of early postnatal mice (both sexes) as a model system, we examined the role of galanin in neuronal cell migration during normal development and after brain injury. Here we show that, during normal development, endogenous galanin participates in accelerating granule cell migration via altering the Ca2+ and cAMP signaling pathways. Upon brain injury induced by the application of cold insults, galanin levels decrease at the lesion sites, but increase in the surroundings of lesion sites. Granule cells exhibit the following corresponding changes in migration: (1) slowing down migration at the lesion sites; and (2) accelerating migration in the surroundings of lesion sites. Experimental manipulations of galanin signaling reduce the lesion site-specific changes in granule cell migration, indicating that galanin plays a role in such deficits in neuronal cell migration. The present study suggests that manipulating galanin signaling may be a potential therapeutic target for acutely injured brains during development.SIGNIFICANCE STATEMENT Deficits in neuronal cell migration caused by brain injury result in abnormal development of cortical layers, but the underlying mechanisms remain to be determined. Here, we report that on brain injury, endogenous levels of galanin, a neuropeptide, are altered in a lesion site-specific manner, decreasing at the lesion sites but increasing in the surroundings of lesion sites. The changes in galanin levels positively correlate with the migration rate of immature neurons. Manipulations of galanin signaling ameliorate the effects of injury on neuronal migration and cortical layer development. These results shed a light on galanin as a potential therapeutic target for acutely injured brains during development.


Asunto(s)
Lesiones Encefálicas/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Movimiento Celular/fisiología , Cerebelo/metabolismo , Galanina/metabolismo , Animales , Animales Recién Nacidos , Lesiones Encefálicas/patología , Células Cultivadas , Cerebelo/lesiones , Cerebelo/patología , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones
12.
Molecules ; 26(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299587

RESUMEN

26RFa is a neuropeptide that activates the rhodopsin-like G protein-coupled receptor QRFPR/GPR103. This peptidergic system is involved in the regulation of a wide array of physiological processes including feeding behavior and glucose homeostasis. Herein, the pharmacological profile of a homogenous library of QRFPR-targeting peptide derivatives was investigated in vitro on human QRFPR-transfected cells with the aim to provide possible insights into the structural determinants of the Phe residues to govern receptor activation. Our work advocates to include in next generations of 26RFa(20-26)-based QRFPR agonists effective substitutions for each Phe unit, i.e., replacement of the Phe22 residue by a constrained 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid moiety, and substitution of both Phe24 and Phe26 by their para-chloro counterpart. Taken as a whole, this study emphasizes that optimized modifications in the C-terminal part of 26RFa are mandatory to design selective and potent peptide agonists for human QRFPR.


Asunto(s)
Sustitución de Aminoácidos , Neuropéptidos , Receptores Acoplados a Proteínas G/agonistas , Animales , Células CHO , Cricetulus , Humanos , Neuropéptidos/química , Neuropéptidos/genética , Neuropéptidos/farmacología , Fenilalanina/química , Fenilalanina/genética , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
13.
J Neurosci ; 41(33): 7148-7159, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34210784

RESUMEN

Following stroke, the survival of neurons and their ability to reestablish connections is critical to functional recovery. This is strongly influenced by the balance between neuronal excitation and inhibition. In the acute phase of experimental stroke, lethal hyperexcitability can be attenuated by positive allosteric modulation of GABAA receptors (GABAARs). Conversely, in the late phase, negative allosteric modulation of GABAAR can correct the suboptimal excitability and improves both sensory and motor recovery. Here, we hypothesized that octadecaneuropeptide (ODN), an endogenous allosteric modulator of the GABAAR synthesized by astrocytes, influences the outcome of ischemic brain tissue and subsequent functional recovery. We show that ODN boosts the excitability of cortical neurons, which makes it deleterious in the acute phase of stroke. However, if delivered after day 3, ODN is safe and improves motor recovery over the following month in two different paradigms of experimental stroke in mice. Furthermore, we bring evidence that, during the subacute period after stroke, the repairing cortex can be treated with ODN by means of a single hydrogel deposit into the stroke cavity.SIGNIFICANCE STATEMENT Stroke remains a devastating clinical challenge because there is no efficient therapy to either minimize neuronal death with neuroprotective drugs or to enhance spontaneous recovery with neurorepair drugs. Around the brain damage, the peri-infarct cortex can be viewed as a reservoir of plasticity. However, the potential of wiring new circuits in these areas is restrained by a chronic excess of GABAergic inhibition. Here we show that an astrocyte-derived peptide, can be used as a delayed treatment, to safely correct cortical excitability and facilitate sensorimotor recovery after stroke.


Asunto(s)
Inhibidor de la Unión a Diazepam/uso terapéutico , Agonistas de Receptores de GABA-A/uso terapéutico , Neuronas/efectos de los fármacos , Neuropéptidos/uso terapéutico , Fragmentos de Péptidos/uso terapéutico , Receptores de GABA-A/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Adulto , Animales , Astrocitos/metabolismo , Depresión de Propagación Cortical/fisiología , Inhibidor de la Unión a Diazepam/deficiencia , Inhibidor de la Unión a Diazepam/fisiología , Implantes de Medicamentos , Potenciales Evocados Somatosensoriales , Femenino , Agonistas de Receptores de GABA-A/farmacología , Humanos , Hidrogeles , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Trombosis Intracraneal/tratamiento farmacológico , Trombosis Intracraneal/etiología , Luz , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/toxicidad , Neuronas/fisiología , Neuropéptidos/deficiencia , Neuropéptidos/fisiología , Técnicas de Placa-Clamp , Fragmentos de Péptidos/deficiencia , Fragmentos de Péptidos/fisiología , Ratas , Rosa Bengala/efectos de la radiación , Rosa Bengala/toxicidad , Método Simple Ciego , Accidente Cerebrovascular/etiología
14.
Exp Neurol ; 341: 113696, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33727098

RESUMEN

Days and weeks after an ischemic stroke, the peri-infarct area adjacent to the necrotic tissue exhibits very intense synaptic reorganization aimed at regaining lost functions. In order to enhance functional recovery, it is important to understand the mechanisms supporting neural repair and neuroplasticity in the cortex surrounding the lesion. Brain oscillations of the local field potential (LFP) are rhythmic fluctuations of neuronal excitability that synchronize neuronal activity to organize information processing and plasticity. Although the oscillatory activity of the brain has been probed after stroke in both animals and humans using electroencephalography (EEG), the latter is ineffective to precisely map the oscillatory changes in the peri-infarct zone where synaptic plasticity potential is high. Here, we worked on the hypothesis that the brain oscillatory system is altered in the surviving peri-infarct cortex, which may slow down the functional repair and reduce the recovery. In order to document the relevance of this hypothesis, oscillatory power was measured at various distances from the necrotic core at 7 and 21 days after a permanent cortical ischemia induced in mice. Delta and theta oscillations remained at a normal power in the peri-infarct cortex, in contrast to low gamma oscillations that displayed a gradual decrease, when approaching the border of the lesion. A broadband increase of power was also observed in the homotopic contralateral sites. Thus, the proximal peri-infarct cortex could become a target of therapeutic interventions applied to correct the oscillatory regimen in order to boost post-stroke functional recovery.


Asunto(s)
Isquemia Encefálica/fisiopatología , Infarto Cerebral/fisiopatología , Ritmo Gamma/fisiología , Neocórtex/fisiopatología , Accidente Cerebrovascular/fisiopatología , Animales , Isquemia Encefálica/patología , Infarto Cerebral/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neocórtex/patología , Accidente Cerebrovascular/patología
15.
Front Pharmacol ; 12: 797541, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153755

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the expression of mutant huntingtin (mHtt). One of the main features of HD is the degeneration of the striatum that leads to motor discoordination. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that acts through three receptors named PAC1R, VPAC1R, and VPAC2R. In the present study, we first investigated the effect of PACAP on STHdhQ7/Q7 and STHdhQ111/Q111 cells that express wild-type Htt with 7 and mHtt with 111 glutamines, respectively. Then we explored the capacity of PACAP to rescue motor symptoms in the R6/1, a murine model of HD. We found that PACAP treatment (10-7 M) for 24 h protects STHdhQ111/Q111 cells from mHtt-induced apoptosis. This effect is associated with an increase in PAC1R transcription, phosphorylation of ERK and Akt, and an increase of intracellular c-fos, egr1, CBP, and BDNF protein content. Moreover, the use of pharmacological inhibitors revealed that activation of ERK and Akt mediates these antiapoptotic and neurotrophic effects of PACAP. To find out PAC1R implication, we treated STHdh cells with vasoactive intestinal peptide (VIP), which exhibits equal affinity for VPAC1R and VPAC2R, but lower affinity for PAC1R, in contrast to PACAP which has same affinity for the three receptors. VIP reduced cleaved caspase-3 protein level, without promoting the expression of c-fos, egr1, CBP, and the neurotrophin BDNF. We next measured the protein level of PACAP receptors in the striatum and cortex of R6/1 mice. We observed a specific reduction of PAC1R at the onset of motor symptoms. Importantly, the intranasal administration of PACAP to R6/1 animals restored the motor function and increased the striatal levels of PAC1R, CBP, and BDNF. In conclusion, PACAP exerts antiapoptotic and neurotrophic effects in striatal neurons mainly through PAC1R. This effect in HD striatum allows the recovery of motor function and point out PAC1R as a therapeutic target for treatment of HD.

16.
Front Endocrinol (Lausanne) ; 11: 566026, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250858

RESUMEN

Octadecaneuropeptide (ODN) and its precursor diazepam-binding inhibitor (DBI) are peptides belonging to the family of endozepines. Endozepines are exclusively produced by astroglial cells in the central nervous system of mammals, and their release is regulated by stress signals and neuroactive compounds. There is now compelling evidence that the gliopeptide ODN protects cultured neurons and astrocytes from apoptotic cell death induced by various neurotoxic agents. In vivo, ODN causes a very strong neuroprotective action against neuronal degeneration in a mouse model of Parkinson's disease. The neuroprotective activity of ODN is based on its capacity to reduce inflammation, apoptosis, and oxidative stress. The protective effects of ODN are mediated through its metabotropic receptor. This receptor activates a transduction cascade of second messengers to stimulate protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) signaling pathways, which in turn inhibits the expression of proapoptotic factor Bax and the mitochondrial apoptotic pathway. In N2a cells, ODN also promotes survival and stimulates neurite outgrowth. During the ODN-induced neuronal differentiation process, numerous mitochondria and peroxisomes are identified in the neurites and an increase in the amount of cholesterol and fatty acids is observed. The antiapoptotic and neurotrophic properties of ODN, including its antioxidant, antiapoptotic, and pro-differentiating effects, suggest that this gliopeptide and some of its selective and stable derivatives may have therapeutic value for the treatment of some neurodegenerative diseases.


Asunto(s)
Citoprotección/efectos de los fármacos , Inhibidor de la Unión a Diazepam/administración & dosificación , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/prevención & control , Neuropéptidos/administración & dosificación , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Animales , Citoprotección/fisiología , Humanos , Ratones , Factores de Crecimiento Nervioso/administración & dosificación , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuroprotección/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
17.
PLoS Pathog ; 16(10): e1008935, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057453

RESUMEN

In a number of species, individuals exposed to pathogens can mount an immune response and transmit this immunological experience to their offspring, thereby protecting them against persistent threats. Such vertical transfer of immunity, named trans-generational immune priming (TGIP), has been described in both vertebrates and invertebrates. Although increasingly studied during the last decade, the mechanisms underlying TGIP in invertebrates are still elusive, especially those protecting the earliest offspring life stage, i.e. the embryo developing in the egg. In the present study, we combined different proteomic and transcriptomic approaches to determine whether mothers transfer a "signal" (such as fragments of infecting bacteria), mRNA and/or protein/peptide effectors to protect their eggs against two natural bacterial pathogens, namely the Gram-positive Bacillus thuringiensis and the Gram-negative Serratia entomophila. By taking the mealworm beetle Tenebrio molitor as a biological model, our results suggest that eggs are mainly protected by an active direct transfer of a restricted number of immune proteins and of antimicrobial peptides. In contrast, the present data do not support the involvement of mRNA transfer while the transmission of a "signal", if it happens, is marginal and only occurs within 24h after maternal exposure to bacteria. This work exemplifies how combining global approaches helps to disentangle the different scenarios of a complex trait, providing a comprehensive characterization of TGIP mechanisms in T. molitor. It also paves the way for future alike studies focusing on TGIP in a wide range of invertebrates and vertebrates to identify additional candidates that could be specific to TGIP and to investigate whether the TGIP mechanisms found herein are specific or common to all insect species.


Asunto(s)
Infecciones Bacterianas/inmunología , Larva/microbiología , Óvulo/inmunología , Serratia/patogenicidad , Tenebrio/microbiología , Animales , Bacillus thuringiensis/patogenicidad , Inmunidad/inmunología , Proteómica/métodos , Tenebrio/inmunología
18.
Front Cell Neurosci ; 14: 221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765225

RESUMEN

Cognitive impairment is one of the major symptoms in most neurodegenerative disorders such as Alzheimer's (AD), Parkinson (PD), and Huntington diseases (HD), affecting millions of people worldwide. Unfortunately, there is no treatment to cure or prevent the progression of those diseases. Cognitive impairment has been related to neuronal cell death and/or synaptic plasticity alteration in important brain regions, such as the cerebral cortex, substantia nigra, striatum, and hippocampus. Therefore, compounds that can act to protect the neuronal loss and/or to reestablish the synaptic activity are needed to prevent cognitive decline in neurodegenerative diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two highly related multifunctional neuropeptides widely distributed in the central nervous system (CNS). PACAP and VIP exert their action through two common receptors, VPAC1 and VPAC2, while PACAP has an additional specific receptor, PAC1. In this review article, we first presented evidence showing the therapeutic potential of PACAP and VIP to fight the cognitive decline observed in models of AD, PD, and HD. We also reviewed the main transduction pathways activated by PACAP and VIP receptors to reduce cognitive dysfunction. Furthermore, we identified the therapeutic targets of PACAP and VIP, and finally, we evaluated different novel synthetic PACAP and VIP analogs as promising pharmacological tools.

19.
Biochim Biophys Acta Gen Subj ; 1864(8): 129626, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32335135

RESUMEN

BACKGROUND: The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28-38) fragment. METHODS: To test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it. RESULTS: VIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28-38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone. CONCLUSIONS: The correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP. GENERAL SIGNIFICANCE: VIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Péptidos de Penetración Celular/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Células Tumorales Cultivadas
20.
J Neurotrauma ; 37(3): 507-516, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31264504

RESUMEN

Spinal cord injury (SCI) induces permanent loss of sensitive and motor functions below the injury level. To date, a wide variety of cells has been used as biotherapies to cure SCI in different animal paradigms. Specifically, olfactory ensheathing cells (OECs) is one of the most promising. Indeed, OECs have been shown to enhance recovery in many animal studies. Moreover, OECs transplantation has been applied to a paraplegic patient and have shown beneficial effects. However, it has been reported that the significant level of recovery varies among different patients. Therefore, it is of primary importance to enhance the regenerative efficiency of OECs for better translations. Recently, it has been shown that inhibiting ADAMTS4 expression in glial cells in vitro increases their synthesis of neurotrophic factors. We hypothesized that the expression of neurotrophic factors secreted by OECs can be increased by the deletion of ADAMTS4. Taking advantage of ADAMTS4-/- mouse line, we produce ADAMTS4 deficient primary OEC cultures and then we investigated their regenerative potential after SCI. By using quantitative polymerase chain reaction, bioluminescence imaging, measurement of locomotor activity, electrophysiological studies, and immunohistochemistry, our results show that ADAMTS4-/- olfactory bulb OEC (bOECs) primary cultures upregulate their trophic factor expression in vitro, and that the transplantation of ADAMTS4-/- bOECs in a severe SCI model increases functional recovery and tissue repair in vivo. Altogether, our study reveals, for the first time, that primary bOEC cultures transplantation can be potentialized by inhibition of the expression of ADAMTS4.


Asunto(s)
Proteína ADAMTS4/antagonistas & inhibidores , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/trasplante , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Proteína ADAMTS4/biosíntesis , Proteína ADAMTS4/deficiencia , Proteína ADAMTS4/genética , Animales , Trasplante de Células/métodos , Trasplante de Células/tendencias , Células Cultivadas , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Regeneración Nerviosa/fisiología , Bulbo Olfatorio/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA